Seismic array detection of subducted oceanic crust in the lower mantle
نویسندگان
چکیده
[1] We analyze short-period precursory energy to PP that can be observed in seismograms in the distance range from 95 to 105 to infer the behavior of subducted slabs beneath western Pacific subduction zones. PP is a P wave once reflected at the free surface between the source and receiver. Using high-resolution seismic array techniques, we analyze the incidence angle, timing, and azimuth of the PP precursors. The precursory energy is resolved to originate from off great circle path azimuths and is consistent with scattering by small-scale heterogeneities. Assuming single scattering, upper mantleand midmantle-derived scatterer locations show a strong geographical and depth correlation to high seismic velocities in tomographic studies. Scattering locations beneath the Tonga and Mariana subduction zones outline continuous dipping structures to a depth of at least 1000 km, consistent with scattering associated with subducted former oceanic lithosphere. Scatterer locations uniquely explain the timing, slowness, and back azimuth of the PP precursors at the array. The observed reflections can be explained with the velocity impedance variations expected for high-pressure basalt juxtaposed with pyrolite or harzburgite and thus may be due to the paleo-Mohorovičić discontinuity within subducted slabs. These results are consistent with basaltic crust penetrating into the lower mantle. This method provides a means for tracking the location of geochemically enriched former oceanic crust in the lower mantle by using recordings of globally distributed seismic arrays and is complementary to longer-wavelength constraints on high seismic velocity slabs inferred from tomography.
منابع مشابه
The difficulty for subducted oceanic crust to accumulate at the Earths coremantle boundary
[1] Seismic tomography has revealed two large low shear velocity provinces (LLSVPs) in the lowermost mantle beneath the central Pacific and Africa. The LLSVPs are further shown to be compositionally different from their surroundings. Among several hypotheses put forth in recent years to explain the cause of the LLSVPs, one postulates that they are thermochemical piles caused by accumulation of ...
متن کاملSeismic evidence for accumulated oceanic crust above the 660-km discontinuity beneath southern Africa
[1] High-pressure assemblages of subducted oceanic crust are denser than the normal upper mantle but less dense than the uppermost lower mantle. Thus subducted oceanic crust may accumulate at the base of the upper mantle. Direct observational evidence for this hypothesis, however, remains elusive. We present an analysis of a negativepolarity shear wave converted from compressional wave at a sei...
متن کاملCarbonate-rich melts in the oceanic low-velocity zone and deep mantle
Deep extensions of low seismic velocities in the mantle beneath volcanic centers are commonly attributed to high temperatures and have been used as a possible characteristic of hot plumes originating at the core-mantle boundary. To address this issue, we examine the effect of volatiles on melting to determine if regions of low seismic velocities may also be interpreted as regions of melting wit...
متن کاملEarthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones
[1] Double Wadati‐Benioff seismic zones (DSZ) with two parallel planes of seismicity separated by 15–30 km are a global feature of subduction zones in the 50–200 km depth range. Upper plane seismicity is generally attributed to dehydration of the oceanic crust but the origin of the lower seismicity plane is debated. Serpentine or hydrous‐phase dehydration embrittlement is a commonly advocated m...
متن کاملMelting of subducted basalt at the core-mantle boundary.
The geological materials in Earth's lowermost mantle control the characteristics and interpretation of seismic ultra-low velocity zones at the base of the core-mantle boundary. Partial melting of the bulk lower mantle is often advocated as the cause, but this does not explain the nonubiquitous character of these regional seismic features. We explored the melting properties of mid-oceanic ridge ...
متن کامل